Publications

  • All publications
  • 2019
  • 2018-2015
  • 2014-2011
  • 2010-2005
  • 2004-2000
  1. “Gas Phase Kinetics and Mechanistic Insights for the Reactions of Cl atoms with Isopropyl Formate and Isobutyl Formate” A. Kumar and B. Rajakumar, J. Phys. Chem. A. 2019.(Just Accepted!)Link
  2. “Investigation of the Absorption Cross-Section of Phenyl Radical and Its Kinetics With Methanol in the Gas Phase Using Cavity Ring-Down Spectroscopy and Theoretical Methodologies”. K. Mondal, R. Kaipara and B. Rajakumar. J. Phys. Chem. A 2019.Link
  3. “Cl Atom Initiated Atmospheric Degradation of Saturated Cyclic Hydrocarbons – Kinetic and Mechanistic Investigation” R. C. Balan and B. Rajakumar, J. Phys. Chem. A 2019, 123, 34, 7361-73.Link
  4. “Cl atom initiated tropospheric chemistry of ethyl butyrate” R. C. Balan and B. Rajakumar, Chem. Phys. Lett. 2019, 731, 136594.Link
  5. “Photo Oxidation Reaction Kinetics and Mechanistics of 4-Hydroxy-2-Butanone with Cl Atoms and OH Radicals in the Gas Phase”. R. C. Balan and B. Rajakumar. J. Phys. Chem. A 2019, 123, 20, 4342-53.Link
  6. “A theoretical insight on the kinetics for the reaction of (E)-/(Z)-CHF=CF(CF2)x=1,2CF3 with OH radicals under tropospheric conditions”. P. Gupta and B. Rajakumar, J. Fluorine Chem. 2019, 222-223, 31-45.Link
  7. “A dual level direct dynamics study for the reaction of CF2=CHCF3 (HFC-1225zc) and CF2=CHCF2CF3 (HFC-1327cz) towards OH radicals”. P. Gupta and B. Rajakumar, Chemistry Select 2019, 4, 4827- 4838.Link
  8. “Experimental and theoretical investigations on the photo-oxidation reaction of OH radicals with 2, 3-dimethyl-1, 3-butadiene in gas phase”. S. Vijayakumar and B. Rajakumar, Indian J. Chem. 2019, 58B, 209-218.Link
  9. “Cl Atom Initiated Photo-oxidation of Mono-chlorinated Propanes To Form Carbonyl Compounds: A Kinetic and Mechanistic Approach”. A. Kumar and B. Rajakumar, J. Phys. Chem. A 2019, 4, 723-741.Link
  10. “Excited state C–N bond dissociation and cyclization of tri-aryl amine-based OLED materials: a theoretical investigation.” J. Vijaya sundar, V. Subramanian and B. Rajakumar. Phys. Chem. Chem. Phys. 2019, 21, 438-447.Link
  11. “Photo Oxidation Reaction Kinetics of Ethyl Propionate with Cl Atom and Formation of Propionic Acid.” R. C. Balan and B. Rajakumar. J. Phys. Chem. A. 2018, 122, 8274-8285.Link
  12. “Cl-initiated photo-oxidation reactions of methyl propionate in atmospheric condition”. R. C. Balan and B. Rajakumar. Environ. Sci. Pollut. Res. 2018, 25, 4387 – 4405.Link
  13. “Temperature-Dependent Kinetics of the Reaction of a Criegee Intermediate with Propionaldehyde: A Computational Investigation.” R. Kaipara and B. Rajakumar. J. Phys. Chem. A. 2018, 122, 8433-8445.Link
  14. “Thermochemistry and Kinetic Studies on the Autoignition of 2-Butanone: A Computational Study.” S. Kuzhanthaivelan and B. Rajakumar. J. Phys. Chem. A. 2018, 122, 6134-6146.Link
  15. “Kinetic investigations on the gas phase reaction of 2,2,2-trifluoroethylbutyrate with OH radicals: An experimental and theoretical study” G. Srinivasulu, S. Vijayakumar and B. Rajakumar. Chemistry Select 2018, 3, 4480-4489.Link
  16. “Kinetic investigations on the chlorine atom sensitized photo-oxidization reactions with a series of 1-alkenes in troposphere.” S. Vijayakumar and B. Rajakumar, Environ. Sci. Pollut. Res. 2018, 25, 4387-4405.Link
  17. “Experimental and computational kinetic investigations for the reactions of Cl atoms with unsaturated ketones in gas phase” S. Vijayakumar, A. Kumar and B. Rajakumar. New J. Chem., 2017,41, 14299-14314.Link
  18. “Experimental and RRKM investigations on the degradation of ethyl formate”, B. Rajakumar, M. Balaganseh and A. Parandaman, ChemistrySelect 2017, 2, 11603 – 11614.Link
  19. “Shock tube study and RRKM calculations on thermal decomposition of 2-chloroethyl methyl ether”. A. Parandaman and B. Rajakumar, Combustion and Flame, 2017, 186, 263-276.Link
  20. “An Experimental and Computational Study on the Cl Atom Initiated Photo-Oxidization Reactions of Butenes in the Gas Phase”. S. Vijayakumar and B. Rajakumar, J. Phys. Chem. A, 2017, 121, 5487–99.Link
  21. “Kinetic investigations of Cl atoms initiated photo oxidation reactions of cyclic unsaturated hydrocarbons in the gas phase: an experimental and theoretical study”. S. Vijayakumar, C. B. Ramya, A. Kumar and B. Rajakumar, New Journal of Chemistry, 2017, 41, 7491 – 7505.Link
  22. “Addition and abstraction kinetics of H atom with propylene and isobutylene between 200 and 2500 K: A DFT study”. A. Parandaman and B. Rajakumar, Chemical Physics, 2017, 491, 82-94.Link
  23. “Experimental and theoretical investigations on the reaction of 1,3-butadiene with Cl atom in the gas phase”. S. Vijayakumar and B. Rajakumar, J. Phys. Chem. A. 2017, 121, 1976−84.Link
  24. “Kinetic investigations of chlorine atom initiated photo oxidation reactions of 2,3-dimethyl-1,3- butadiene in the gas phase: an experimental and theoretical study”. S. Vijayakumar and B. Rajakumar, RSC Adv., 2016, 6, 67739-50.Link
  25. “Thermal Decomposition of 2-Pentanol: A Shock Tube Study and RRKM Calculations”. P. Arathala and B. Rajakumar, J. Phys. Chem. A, 2016, 120(41), 8024-8036.Link
  26. “Metal-free bipolar/octupolar organic dyes for DSSC application: A combined experimental and theoretical approach”, Sudip Mandal, Suman Kushwaha, Ramesh Mukkamala, Vijaya K. Siripina, Indrapal Singh Aidhen, B. Rajakumar, Ramanujam Kothandaraman, Organic Electronics 2016, 36, 177-184.Link
  27. “Kinetics of the thermal decomposition of tetramethylsilane behind the reflected shock waves between 1058 and 1194 K”. A. Parandaman and B. Rajakumar, J. Chem. Sci., 2016, 128, 573-588.Link
  28. “Rate coefficients for hydrogen abstraction reaction of pinonaldehyde (C10H16O2) with Cl atoms between 200 and 400 K: A DFT study”. G. Srinivasulu and B. Rajakumar, J. Chem. Sci., 2016, 128, 977-989.Link
  29. “Is H Atom Abstraction Important in the Reaction of Cl with 1-Alkenes?”. M. P. Walavalkar, S. Vijayakumar, A. Sharma, B. Rajakumar and S. Dhanya, J. Phys. Chem. A, 2016, 120, 4096-4107.Link
  30. “Measuring Temperature of Reflected Shock Wave Using a Standard Chemical Reaction”. M. Kiran Singh, B. Rajakumar and E. Arunan, Journal of the Indian Institute of Science, 2016, 96,1.Link
  31. “Experimental and theoretical study on thermal decomposition of methyl butanoate behind reflected shock waves”. A. Parandaman, M. Balaganesh and B. Rajakumar, RSC Adv., 2015, 5, 86536-50.Link
  32. “Gas Phase Kinetics of 2, 2, 2-trifluoroethylbutyrate with Cl Atom: An Experimental and Theoretical Study”. G. and Rajakumar B., J. Phys. Chem. A, 2015, 119, 9294-9306.Link
  33. “Kinetic parameters for the reaction of OH radical with cis-CHF=CHCHF2, trans-CHF=CHCHF2, CF2=CHCHF2 and CF2=C=CHF: Hybrid meta DFT and CVT/SCT/ISPE calculations” Ramanjaneyulu, C.; Rajakumar, B. J. Fluorine Chem. 2015, 178, 266-278.Link
  34. “Experimental and computational investigation on the gas phase reaction of p-cymene with Cl atoms”. Dash, M.R., Srinivasulu, G., Rajakumar, B., J. Phys. Chem. A, 2015, 119, 4, 559-570.Link
  35. “Theoretical investigations of the gas phase reaction of limonene (C10H16) with OH radical”. M.R. Dash and B. Rajakumar, Molecular Physics, 2015, 113, 21, 3202-15.Link
  36. Abstraction and addition kinetics of C2H radicals with CH4, C2H6, C3H8, C2H4, and C3H6: CVT/SCT/ISPE and hybrid meta-DFT methods”. Dash M. R., Rajakumar B., Phys Chem Chem Phys, 2015, 17, 5, 3142-3156.Link
  37. “Reaction kinetics of Cl atoms with limonene: An experimental and theoretical study”. M. R. Dash and B. Rajakumar, Atmos. Environ., 2014, 99, 183.Link
  38. “Theoretical investigations on the kinetics of p-cymene + OH reaction”. Dash, M.R., Rajakumar, B.; Chem Phys Lett, 597, 2014, 75-85.Link
  39. “Rate coefficients for the gas-phase reaction of OH radical with alpha-pinene: An experimental and computational study”. Dash, M.R., Balaganesh,M., Rajakumar, B.; Molecular Physics, 112, 11, 2014, 1495-1511.Link
  40. “Thermal decomposition of 1-chloropropane behind the reflected shock waves in the temperature range of 1015-1220 K: Single pulse shock tube and computational studies”. Sudhakar, G., Rajakumar, B.; J. Chem. Sci., 126, 4, 2014, 897-909.Link
  41. “Experimental and computational investigation on the gas phase reaction of ethyl formate with Cl atoms”. Balaganesh, M., Dash, M.R., Rajakumar, B.; J. Phys. Chem. A 2014, 118, 28, 5272-5278.Link
  42. “Mechanism, kinetics and atmospheric fate of CF3CHCH2, CF3CFCH2, and CF3CFCF2 by its reaction with OH-radicals: CVT/SCT/ISPE and hybrid meta-DFT methods”. Balaganesh,M., Rajakumar, B.; Journal of Molecular Graphics and Modelling, 48, 2014, 60-69.Link
  43. “Theoretical investigations on the kinetics of H-abstraction reactions from CF3CH(OH)CF3 by OH radicals”. Srinivasulu G., Rajakumar B., J Phys Chem A, 117, 22, 2013, 4534-4544.Link
  44. “Experimental and theoretical rate coefficients for the gas phase reaction of beta-Pinene with OH radical”. Dash, M.R., Rajakumar, B; Atmos Environ, 79, 2013, 161-171.Link
  45. “Abstraction Kinetics of H-Atom by OH Radical from Pinonaldehyde: Ab Initio and Transition-State Theory Calculations” Manas Ranjan Dash and B. Rajakumar; J. Phys. Chem. A, 2012, 116, 5856-5866.Link
  46. “Kinetic parameters for the reaction of OH radical initiated atmospheric oxidation of (E)-2-pentenal: Ab initio and transition state theory calculations”. Upendra, B., Lakshmi Prasanna, D.S., Rajakumar, B., Current Science 2012, 102, 3, 460-469.Link
  47. “Rate Coefficients and Reaction Mechanism for the Reaction of OH Radicals with (E)-CF3CH═CHF, (Z)-CF3CH═CHF, (E)-CF3CF═CHF, and (Z)-CF3CF═CHF between 200 and 400 K: Hybrid Density Functional Theory and Canonical Variational Transition State Theory Calculations”. Balaganesh M., Rajakumar B., J. Phys. Chem. A, 2012, 116, 40, 9835-42.Link
  48. “Kinetic parameters of OH radical reaction with CH3OCH2F (HFE-161) in the temperature range of 200 400 K: Transition State Theory and ab initio calculations”. Veerabhadrarao Kaliginedi, Mohamad Akbar Ali and B.Rajakumar. International Journal of Quantum Chemistry, 2011, 112, 1066-77.Link
  49. Kinetic parameters of abstraction reactions of OH radical with ethylene, fluoroethylene, cis- and trans-1,2-difluoroethylene and 1,1-difluoroethylene, in the temperature range of 200-400 K: Gaussian-3/B3LYP theory”. Ali, M. A., Upendra, B., Rajakumar, B. ,Chem Phys Lett, 2011, 511, 4-6, 440-446.Link
  50. “Computational studies on CHF2CHFCHF2 (HFC-245ea) + OH reaction between 200 and 400 K”. Mohamad Akbar Ali, B.Rajakumar. Int. J. Chem. Kinet. 2011, 43, 418-430.Link
  51. “Thermodynamic and kinetic studies of hydroxyl radical reaction with bromineoxide using density functional theory”. Mohamad Akbar Ali, B.Rajakumar. Computational and Theoretical Chemistry, 2011, 964, 283.Link
  52. “Kinetics of OH radical reaction with CH3CHFCH2F (HFC-245eb) between 200 and 400K: G3MP2, G3B3 and Transition State Theory Calculations”. Mohamad Akbar Ali, B.Rajakumar. Journal of Molecular Structure: THEOCHEM, 2010, 949, 73-81.Link
  53. “Rate Coefficients for the Reactions of OH with n-propanol and iso-propanol between 235 and 376K”. B.Rajakumar, David C. McCabe, Ranajit K. Talukdar, A. R. Ravishankara, Int. J. Chem. Kinet. 2010, 43, 10.Link
  54. “Kinetic study of the reaction of the acetyl radical, CH3CO, with O3 using cavity ring-down spectroscopy”. Thomasz Gierczak, B.Rajakumar, John E. Flad, James B. Burkholder. Chem. Phys. Lett. 2010, 484, 160-164.Link
  55. “Rate coefficients for the Reaction of OH with CF3CH2CH3 (HFC-263fb) between 200 and 400K: ab initio, DFT and Transitions State Theory Calculations”. Mohamad Akbar Ali, B. Rajakumar. J. Comp. Chem. 2010, 31, 500-509.Link
  56. “Rate coefficients for the reactions of the acetyl radical, CH3CO, with Cl2 between 253 and 384K”. Thomasz Gierczak, B.Rajakumar, John E. Flad, James B. Burkholder. Int. J. Chem. Kinet. 2009, 41, 543-553.Link
  57. “The CH3CHO quantum yield in the 248 nm photolysis of acetone, methyl ethyl ketone, and biacetyl.” B.Rajakumar, Thomasz Gierczak, John E. Flad, A. R. Ravishankara, James B. Burkholder. J. Photo. Chem. Photo. Biol. A: Chemistry, 2008, 199, 336-344.Link
  58. “Visible absorption spectrum of acetyl radical”. B. Rajakumar, Thomas Gericzak, John E. Flad, A. R. Ravishankara, James B. Burkholder, J. Phys. Chem. A. 2007, 111, 8950-8958. (Cover Page Article, Issue 37)Link
  59. “Kinetics of Quenching of OH (v=1) and OD (v=1) by H2O and D2O from 260 to 370K”. David C. McCabe, B. Rajakumar, P. Marshall, I. W. M. Smith, A. R. Ravishankara. Phys. Chem. Chem. Phys. 2006, 8, 4563-94.Link
  60. “Rate coefficients for the relaxation of OH(v=1) by O2 at Temperatures from 204-371 K and by NO2 from 243-372 K”. David C. McCabe, B.Rajakumar, I. W. M. Smith, A. R. Ravishankara. Chem. Phys. Lett. 2006, 421, 111-117.Link
  61. “Rate Coefficients for the Reactions of OH with CF3CH2CH3 (HFC-263fb), CF3CHFCH2F (HFC-245eb), and CHF2CHFCHF2 (HFC-245ea) between 238 and 375 K”. B. Rajakumar, R. W. Portmann, James B. Burkholder, A. R. Ravishankara. J. Phys. Chem. A. 2006, 110, 6724-31.Link
  62. “Rate coefficients for the OH + CFH2CH2OH reaction between 238 and 355 K”. B. Rajakumar, Robert W. Portmann, James B. Burkholder, A. R. Ravishankara. Phys. Chem. Chem. Phys. 2005, 7, 2498-2505.Link
  63. “Ab initio, DFT and transition state theory calculations on 1, 2-HF, HCI and CIF elimination reactions from CH2FCH2Cl”. B.Rajakumar, E. Arunan. Phys. Chem. Chem. Phys. 2003, 5, 3897-3904.Link
  64. “Thermal decomposition of 2-fluoroethanol: A Shock Tube and ab initio study”. B.Rajakumar, K. P. J. Reddy, E. Arunan. J. Phys. Chem. A. 2003, 107, 9782- 9793.Link
  65. “Chemical kinetics studies at high temperature using Shock Tubes”. B.Rajakumar, D. Anandraj, K. P. J. Reddy and E. Arunan. J. Ind. Inst. Sci. 2002, 82, 37-47.Link
  66. “Unimolecular HCl elimination from 1,2-dichloroethane: A Single Pulse Shock Tube and ab initio study”. B. Rajakumar, K. P. J. Reddy and E. Arunan., J. Phys. Chem. A, 2002, 106, 8366.Link
  1. “Gas Phase Kinetics and Mechanistic Insights for the Reactions of Cl atoms with Isopropyl Formate and Isobutyl Formate” A. Kumar and B. Rajakumar, J. Phys. Chem. A. 2019.(Just Accepted!)Link
  2. “Investigation of the Absorption Cross-Section of Phenyl Radical and Its Kinetics With Methanol in the Gas Phase Using Cavity Ring-Down Spectroscopy and Theoretical Methodologies”. K. Mondal, R. Kaipara and B. Rajakumar. J. Phys. Chem. A 2019.Link
  3. “Cl Atom Initiated Atmospheric Degradation of Saturated Cyclic Hydrocarbons – Kinetic and Mechanistic Investigation” R. C. Balan and B. Rajakumar, J. Phys. Chem. A 2019, 123, 34, 7361-73.Link
  4. “Cl atom initiated tropospheric chemistry of ethyl butyrate” R. C. Balan and B. Rajakumar, Chem. Phys. Lett. 2019, 731, 136594.Link
  5. “Photo Oxidation Reaction Kinetics and Mechanistics of 4-Hydroxy-2-Butanone with Cl Atoms and OH Radicals in the Gas Phase”. R. C. Balan and B. Rajakumar. J. Phys. Chem. A 2019, 123, 20, 4342-53.Link
  6. “A theoretical insight on the kinetics for the reaction of (E)-/(Z)-CHF=CF(CF2)x=1,2CF3 with OH radicals under tropospheric conditions”. P. Gupta and B. Rajakumar, J. Fluorine Chem. 2019, 222-223, 31-45.Link
  7. “A dual level direct dynamics study for the reaction of CF2=CHCF3 (HFC-1225zc) and CF2=CHCF2CF3 (HFC-1327cz) towards OH radicals”. P. Gupta and B. Rajakumar, Chemistry Select 2019, 4, 4827- 4838.Link
  8. “Experimental and theoretical investigations on the photo-oxidation reaction of OH radicals with 2, 3-dimethyl-1, 3-butadiene in gas phase”. S. Vijayakumar and B. Rajakumar, Indian J. Chem. 2019, 58B, 209-218.Link
  9. “Cl Atom Initiated Photo-oxidation of Mono-chlorinated Propanes To Form Carbonyl Compounds: A Kinetic and Mechanistic Approach”. A. Kumar and B. Rajakumar, J. Phys. Chem. A 2019, 4, 723-741.Link
  10. “Excited state C–N bond dissociation and cyclization of tri-aryl amine-based OLED materials: a theoretical investigation.” J. Vijaya sundar, V. Subramanian and B. Rajakumar. Phys. Chem. Chem. Phys. 2019, 21, 438-447.Link
  1. “Photo Oxidation Reaction Kinetics of Ethyl Propionate with Cl Atom and Formation of Propionic Acid.” R. C. Balan and B. Rajakumar. J. Phys. Chem. A. 2018, 122, 8274-8285.Link
  2. “Cl-initiated photo-oxidation reactions of methyl propionate in atmospheric condition”. R. C. Balan and B. Rajakumar. Environ. Sci. Pollut. Res. 2018, 25, 4387 – 4405.Link
  3. “Temperature-Dependent Kinetics of the Reaction of a Criegee Intermediate with Propionaldehyde: A Computational Investigation.” R. Kaipara and B. Rajakumar. J. Phys. Chem. A. 2018, 122, 8433-8445.Link
  4. “Thermochemistry and Kinetic Studies on the Autoignition of 2-Butanone: A Computational Study.” S. Kuzhanthaivelan and B. Rajakumar. J. Phys. Chem. A. 2018, 122, 6134-6146.Link
  5. “Kinetic investigations on the gas phase reaction of 2,2,2-trifluoroethylbutyrate with OH radicals: An experimental and theoretical study” G. Srinivasulu, S. Vijayakumar and B. Rajakumar. Chemistry Select 2018, 3, 4480-4489.Link
  6. “Kinetic investigations on the chlorine atom sensitized photo-oxidization reactions with a series of 1-alkenes in troposphere.” S. Vijayakumar and B. Rajakumar, Environ. Sci. Pollut. Res. 2018, 25, 4387-4405.Link
  7. “Experimental and computational kinetic investigations for the reactions of Cl atoms with unsaturated ketones in gas phase” S. Vijayakumar, A. Kumar and B. Rajakumar. New J. Chem., 2017,41, 14299-14314.Link
  8. “Experimental and RRKM investigations on the degradation of ethyl formate”, B. Rajakumar, M. Balaganseh and A. Parandaman, ChemistrySelect 2017, 2, 11603 – 11614.Link
  9. “Shock tube study and RRKM calculations on thermal decomposition of 2-chloroethyl methyl ether”. A. Parandaman and B. Rajakumar, Combustion and Flame, 2017, 186, 263-276.Link
  10. “An Experimental and Computational Study on the Cl Atom Initiated Photo-Oxidization Reactions of Butenes in the Gas Phase”. S. Vijayakumar and B. Rajakumar, J. Phys. Chem. A, 2017, 121, 5487–99.Link
  11. “Kinetic investigations of Cl atoms initiated photo oxidation reactions of cyclic unsaturated hydrocarbons in the gas phase: an experimental and theoretical study”. S. Vijayakumar, C. B. Ramya, A. Kumar and B. Rajakumar, New Journal of Chemistry, 2017, 41, 7491 – 7505.Link
  12. “Addition and abstraction kinetics of H atom with propylene and isobutylene between 200 and 2500 K: A DFT study”. A. Parandaman and B. Rajakumar, Chemical Physics, 2017, 491, 82-94.Link
  13. “Experimental and theoretical investigations on the reaction of 1,3-butadiene with Cl atom in the gas phase”. S. Vijayakumar and B. Rajakumar, J. Phys. Chem. A. 2017, 121, 1976−84.Link
  14. “Kinetic investigations of chlorine atom initiated photo oxidation reactions of 2,3-dimethyl-1,3- butadiene in the gas phase: an experimental and theoretical study”. S. Vijayakumar and B. Rajakumar, RSC Adv., 2016, 6, 67739-50.Link
  15. “Thermal Decomposition of 2-Pentanol: A Shock Tube Study and RRKM Calculations”. P. Arathala and B. Rajakumar, J. Phys. Chem. A, 2016, 120(41), 8024-8036.Link
  16. “Metal-free bipolar/octupolar organic dyes for DSSC application: A combined experimental and theoretical approach”, Sudip Mandal, Suman Kushwaha, Ramesh Mukkamala, Vijaya K. Siripina, Indrapal Singh Aidhen, B. Rajakumar, Ramanujam Kothandaraman, Organic Electronics 2016, 36, 177-184.Link
  17. “Kinetics of the thermal decomposition of tetramethylsilane behind the reflected shock waves between 1058 and 1194 K”. A. Parandaman and B. Rajakumar, J. Chem. Sci., 2016, 128, 573-588.Link
  18. “Rate coefficients for hydrogen abstraction reaction of pinonaldehyde (C10H16O2) with Cl atoms between 200 and 400 K: A DFT study”. G. Srinivasulu and B. Rajakumar, J. Chem. Sci., 2016, 128, 977-989.Link
  19. “Is H Atom Abstraction Important in the Reaction of Cl with 1-Alkenes?”. M. P. Walavalkar, S. Vijayakumar, A. Sharma, B. Rajakumar and S. Dhanya, J. Phys. Chem. A, 2016, 120, 4096-4107.Link
  20. “Measuring Temperature of Reflected Shock Wave Using a Standard Chemical Reaction”. M. Kiran Singh, B. Rajakumar and E. Arunan, Journal of the Indian Institute of Science, 2016, 96,1.Link
  21. “Experimental and theoretical study on thermal decomposition of methyl butanoate behind reflected shock waves”. A. Parandaman, M. Balaganesh and B. Rajakumar, RSC Adv., 2015, 5, 86536-50.Link
  22. “Gas Phase Kinetics of 2, 2, 2-trifluoroethylbutyrate with Cl Atom: An Experimental and Theoretical Study”. G. and Rajakumar B., J. Phys. Chem. A, 2015, 119, 9294-9306.Link
  23. “Kinetic parameters for the reaction of OH radical with cis-CHF=CHCHF2, trans-CHF=CHCHF2, CF2=CHCHF2 and CF2=C=CHF: Hybrid meta DFT and CVT/SCT/ISPE calculations” Ramanjaneyulu, C.; Rajakumar, B. J. Fluorine Chem. 2015, 178, 266-278.Link
  24. “Experimental and computational investigation on the gas phase reaction of p-cymene with Cl atoms”. Dash, M.R., Srinivasulu, G., Rajakumar, B., J. Phys. Chem. A, 2015, 119, 4, 559-570.Link
  25. “Theoretical investigations of the gas phase reaction of limonene (C10H16) with OH radical”. M.R. Dash and B. Rajakumar, Molecular Physics, 2015, 113, 21, 3202-15.Link
  26. Abstraction and addition kinetics of C2H radicals with CH4, C2H6, C3H8, C2H4, and C3H6: CVT/SCT/ISPE and hybrid meta-DFT methods”. Dash M. R., Rajakumar B., Phys Chem Chem Phys, 2015, 17, 5, 3142-3156.Link
  1. “Reaction kinetics of Cl atoms with limonene: An experimental and theoretical study”. M. R. Dash and B. Rajakumar, Atmos. Environ., 2014, 99, 183.Link
  2. “Theoretical investigations on the kinetics of p-cymene + OH reaction”. Dash, M.R., Rajakumar, B.; Chem Phys Lett, 597, 2014, 75-85.Link
  3. “Rate coefficients for the gas-phase reaction of OH radical with alpha-pinene: An experimental and computational study”. Dash, M.R., Balaganesh,M., Rajakumar, B.; Molecular Physics, 112, 11, 2014, 1495-1511.Link
  4. “Thermal decomposition of 1-chloropropane behind the reflected shock waves in the temperature range of 1015-1220 K: Single pulse shock tube and computational studies”. Sudhakar, G., Rajakumar, B.; J. Chem. Sci., 126, 4, 2014, 897-909.Link
  5. “Experimental and computational investigation on the gas phase reaction of ethyl formate with Cl atoms”. Balaganesh, M., Dash, M.R., Rajakumar, B.; J. Phys. Chem. A 2014, 118, 28, 5272-5278.Link
  6. “Mechanism, kinetics and atmospheric fate of CF3CHCH2, CF3CFCH2, and CF3CFCF2 by its reaction with OH-radicals: CVT/SCT/ISPE and hybrid meta-DFT methods”. Balaganesh,M., Rajakumar, B.; Journal of Molecular Graphics and Modelling, 48, 2014, 60-69.Link
  7. “Theoretical investigations on the kinetics of H-abstraction reactions from CF3CH(OH)CF3 by OH radicals”. Srinivasulu G., Rajakumar B., J Phys Chem A, 117, 22, 2013, 4534-4544.Link
  8. “Experimental and theoretical rate coefficients for the gas phase reaction of beta-Pinene with OH radical”. Dash, M.R., Rajakumar, B; Atmos Environ, 79, 2013, 161-171.Link
  9. “Abstraction Kinetics of H-Atom by OH Radical from Pinonaldehyde: Ab Initio and Transition-State Theory Calculations” Manas Ranjan Dash and B. Rajakumar; J. Phys. Chem. A, 2012, 116, 5856-5866.Link
  10. “Kinetic parameters for the reaction of OH radical initiated atmospheric oxidation of (E)-2-pentenal: Ab initio and transition state theory calculations”. Upendra, B., Lakshmi Prasanna, D.S., Rajakumar, B., Current Science 2012, 102, 3, 460-469.Link
  11. “Rate Coefficients and Reaction Mechanism for the Reaction of OH Radicals with (E)-CF3CH═CHF, (Z)-CF3CH═CHF, (E)-CF3CF═CHF, and (Z)-CF3CF═CHF between 200 and 400 K: Hybrid Density Functional Theory and Canonical Variational Transition State Theory Calculations”. Balaganesh M., Rajakumar B., J. Phys. Chem. A, 2012, 116, 40, 9835-42.Link
  12. “Kinetic parameters of OH radical reaction with CH3OCH2F (HFE-161) in the temperature range of 200 400 K: Transition State Theory and ab initio calculations”. Veerabhadrarao Kaliginedi, Mohamad Akbar Ali and B.Rajakumar. International Journal of Quantum Chemistry, 2011, 112, 1066-77.Link
  13. Kinetic parameters of abstraction reactions of OH radical with ethylene, fluoroethylene, cis- and trans-1,2-difluoroethylene and 1,1-difluoroethylene, in the temperature range of 200-400 K: Gaussian-3/B3LYP theory”. Ali, M. A., Upendra, B., Rajakumar, B. ,Chem Phys Lett, 2011, 511, 4-6, 440-446.Link
  14. “Computational studies on CHF2CHFCHF2 (HFC-245ea) + OH reaction between 200 and 400 K”. Mohamad Akbar Ali, B.Rajakumar. Int. J. Chem. Kinet. 2011, 43, 418-430.Link
  15. “Thermodynamic and kinetic studies of hydroxyl radical reaction with bromineoxide using density functional theory”. Mohamad Akbar Ali, B.Rajakumar. Computational and Theoretical Chemistry, 2011, 964, 283.Link
  1. “Kinetics of OH radical reaction with CH3CHFCH2F (HFC-245eb) between 200 and 400K: G3MP2, G3B3 and Transition State Theory Calculations”. Mohamad Akbar Ali, B.Rajakumar. Journal of Molecular Structure: THEOCHEM, 2010, 949, 73-81.Link
  2. “Rate Coefficients for the Reactions of OH with n-propanol and iso-propanol between 235 and 376K”. B.Rajakumar, David C. McCabe, Ranajit K. Talukdar, A. R. Ravishankara, Int. J. Chem. Kinet. 2010, 43, 10.Link
  3. “Kinetic study of the reaction of the acetyl radical, CH3CO, with O3 using cavity ring-down spectroscopy”. Thomasz Gierczak, B.Rajakumar, John E. Flad, James B. Burkholder. Chem. Phys. Lett. 2010, 484, 160-164.Link
  4. “Rate coefficients for the Reaction of OH with CF3CH2CH3 (HFC-263fb) between 200 and 400K: ab initio, DFT and Transitions State Theory Calculations”. Mohamad Akbar Ali, B. Rajakumar. J. Comp. Chem. 2010, 31, 500-509.Link
  5. “Rate coefficients for the reactions of the acetyl radical, CH3CO, with Cl2 between 253 and 384K”. Thomasz Gierczak, B.Rajakumar, John E. Flad, James B. Burkholder. Int. J. Chem. Kinet. 2009, 41, 543-553.Link
  6. “The CH3CHO quantum yield in the 248 nm photolysis of acetone, methyl ethyl ketone, and biacetyl.” B.Rajakumar, Thomasz Gierczak, John E. Flad, A. R. Ravishankara, James B. Burkholder. J. Photo. Chem. Photo. Biol. A: Chemistry, 2008, 199, 336-344.Link
  7. “Visible absorption spectrum of acetyl radical”. B. Rajakumar, Thomas Gericzak, John E. Flad, A. R. Ravishankara, James B. Burkholder, J. Phys. Chem. A. 2007, 111, 8950-8958. (Cover Page Article, Issue 37)Link
  8. “Kinetics of Quenching of OH (v=1) and OD (v=1) by H2O and D2O from 260 to 370K”. David C. McCabe, B. Rajakumar, P. Marshall, I. W. M. Smith, A. R. Ravishankara. Phys. Chem. Chem. Phys. 2006, 8, 4563-94.Link
  9. “Rate coefficients for the relaxation of OH(v=1) by O2 at Temperatures from 204-371 K and by NO2 from 243-372 K”. David C. McCabe, B.Rajakumar, I. W. M. Smith, A. R. Ravishankara. Chem. Phys. Lett. 2006, 421, 111-117.Link
  10. “Rate Coefficients for the Reactions of OH with CF3CH2CH3 (HFC-263fb), CF3CHFCH2F (HFC-245eb), and CHF2CHFCHF2 (HFC-245ea) between 238 and 375 K”. B. Rajakumar, R. W. Portmann, James B. Burkholder, A. R. Ravishankara. J. Phys. Chem. A. 2006, 110, 6724-31.Link
  11. “Rate coefficients for the OH + CFH2CH2OH reaction between 238 and 355 K”. B. Rajakumar, Robert W. Portmann, James B. Burkholder, A. R. Ravishankara. Phys. Chem. Chem. Phys. 2005, 7, 2498-2505.Link