Publications

  • All publications
  • 2020
  • 2019-2015
  • 2014-2011
  • 2010-2005
  • 2004-2000
  1. “Kinetic Investigation of the Reaction of Ethylperoxy Radicals with Ethanol”
    S. Kuzhanthaivelan & B. Rajakumar. Int. J. Chem. Kinet. 2020.(Just Accepted!)
  2. “Reaction kinetics of a series of alkenes with ClO and BrO radicals: A theoretical study”
    P. Gupta & B. Rajakumar. Int. J. Chem. Kinet. 2020.(Just Accepted!)
  3. “Reaction kinetics of a series of alkanes with ClO and BrO radicals: A theoretical study”
    P. Gupta & B. Rajakumar. Int. J. Chem. Kinet. 2020, 1-18.
    Link
  4. “Kinetics, thermochemistry and atmospheric implications for the reaction of OH radicals with CH3CF=CF2 (HFO-1243yc)”
    F. Jabeen, A. Kumar & B. Rajakumar. Chem. Phys. Lett. 2020, 758, 137933.
    Link
  5. “Reaction of phenyl radicals towards propionaldehyde and butyraldehyde over the temperature range of 200-2000 K”
    P. Gupta & B. Rajakumar. Chem. Phys. Lett. 2020, 758, 137915.
    Link
  6. “Theoretical Investigations on the Kinetics of Dimethoxymethane with Peroxy Radicals”
    S. Kuzhanthaivelan & B. Rajakumar. Chem. Phys. Lett. 2020, 756, 137846.
    Link
  7. “Temperature-dependent kinetics on the reactions of Methyl-2-methyl propionate and Methyl -2-methyl butanoate with Cl atoms under tropospheric conditions”
    R. Kaipara & B. Rajakumar. ACS Earth Space Chem. 2020, 4(8), 1448-1460.
    Link
  8. “Kinetic Investigations on the Reaction of Phenyl Radicals with Ethyl Acetate in the Gas Phase: An Experimental and Computational Study”
    K. Mondal & B. Rajakumar. J. Phys. Chem. A 2020, 124 (27), 5503-5512.
    Link
  9. “Computational investigations on the thermochemistry and kinetics for the autoignition of 2-pentanone”
    S. Kuzhanthaivelan & B. Rajakumar. Combustion and Flame 2020, 219, 147-160.
    Link
  10. “Tropospheric Photo-Oxidation of Ethyl Methacrylate Initiated by Cl Atoms in the Gas Phase: Kinetic and Mechanistic Investigations”
    A. Kumar & B. Rajakumar. ACS Earth Space Chem. 2020, 4 (6), 831-842.
    Link
  11. “Dissociative Nature of C(sp2)-N(sp3) bonds of Carbazole Based Materials via Conical Intersection: Simple Method to Predict the Exciton Stability of Host Materials for blue OLEDs: A Computational Study.”
    J. Vijaya Sundar & B. Rajakumar. Phys. Chem. Chem. Phys. 2020, 22, 7995-8005.
    Link
  12. “Photo-Oxidation Reactions of Ethyl 2-Methyl Propionate (E2MP) and Ethyl-2,2- Dimethyl Propionate (E22DMP) Initiated by OH Radicals: An Experimental and Computational Study.”
    R. Kaipara & B. Rajakumar. J. Phys. Chem. A. 2020, 124 (14), 2768-2784.
    Link
  13. “Tropospheric Chemistry of Ethyl Tiglate Initiated by Cl Atoms”
    R. C. Balan & B. Rajakumar. Chem. Phys. Lett. 2020, 248, 137371.
    Link
  14. “Cl-Initiated Photo-Oxidation Studies of Methyl Valerate and Methyl Isovalerate under Tropospheric Relevant Conditions”
    R. Kaipara & B. Rajakumar. J. Phys. Chem. A. 2020, 124 (13), 2515-2529.
    Link
  15. “Kinetic and Mechanistic Investigation for the Gas Phase Tropospheric Photo-Oxidation Reactions of 2,2,2-Trifluoroethyl Acrylate with OH Radicals and Cl Atoms”
    A. Kumar & B. Rajakumar. J. Phys. Chem. A. 2020, 124 (12), 2335-2351.
    Link
  16. “Cl Atom Initiated Photo-Oxidation Reactions of Vinyl Trifluoroacetate and Allyl Trifluoroacetate in the Tropospheric Conditions”
    R. Kaipara & B. Rajakumar. J. Phys. Chem. A. 2020, 124 (11), 2123-2139.
    Link
  17. “Reaction kinetics of CH2OO with 1,3-butadiene: Mechanistic investigation with RRKM calculations”
    P. Gupta & B. Rajakumar. Chem. Phys. Lett. 2020, 742, 137157.
    Link
  18. “Oxidative degradation kinetics and mechanism of two biodiesel constituents ((Ethyl-2-methyl propionate (E2MP) and ethyl-2,2-dimethyl propionate (E22DMP)) initiated by Cl atoms”
    R. Kaipara and B. Rajakumar. ACS Earth Space Chem. 2020, 4, 142-156.
    Link
  19. “Cl Atom and OH Radical Initiated Kinetic and Mechanistic Study on the Degradation of Propyl Butanoate under Tropospheric Conditions”
    P. Gupta and B. Rajakumar. J. Phys. Chem. A 2019, 123, 10976-10989.
    Link
  20. “Kinetics and Mechanistic Study for Gas Phase Tropospheric Photo-Oxidation Reactions of 2,2,2-Trifluoroethyl Methacrylate With OH Radicals and Cl Atoms: An Experimental and Computational Approach”
    A. Kumar & B. Rajakumar. J. Phys. Chem. A 2019, 123, 10868-10884.
    Link
  21. “Gas Phase Kinetics and Mechanistic Insights for the Reactions of Cl atoms with Isopropyl Formate and Isobutyl Formate”
    A. Kumar and B. Rajakumar, J. Phys. Chem. A. 2019, 123, 9978-9994.
    Link
  22. “Investigation of the Absorption Cross-Section of Phenyl Radical and Its Kinetics With Methanol in the Gas Phase Using Cavity Ring-Down Spectroscopy and Theoretical Methodologies”
    K. Mondal, R. Kaipara and B. Rajakumar. J. Phys. Chem. A 2019, 123, 9682-9692.
    Link
  23. “Cl Atom Initiated Atmospheric Degradation of Saturated Cyclic Hydrocarbons – Kinetic and Mechanistic Investigation.”
    R. C. Balan & B. Rajakumar. J. Phys. Chem. A 2019, 123, 34, 7361-73.
    Link
  24. “Cl atom initiated tropospheric chemistry of ethyl butyrate.”
    R. C. Balan & B. Rajakumar. Chem. Phys. Lett. 2019, 731, 136594.
    Link
  25. “Photo Oxidation Reaction Kinetics and Mechanistics of 4-Hydroxy-2-Butanone with Cl Atoms and OH Radicals in the Gas Phase”.
    R. C. Balan & B. Rajakumar. J. Phys. Chem. A 2019, 123, 20, 4342-53.
    Link
  26. “A theoretical insight on the kinetics for the reaction of (E)-/(Z)-CHF=CF(CF2)x=1,2CF3 with OH radicals under tropospheric conditions.”
    P. Gupta & B. Rajakumar. J. Fluorine Chem. 2019, 222-223, 31-45.
    Link
  27. “A dual level direct dynamics study for the reaction of CF2=CHCF3 (HFC-1225zc) and CF2=CHCF2CF3 (HFC-1327cz) towards OH radicals.”
    P. Gupta & B. Rajakumar. Chemistry Select 2019, 4, 4827- 4838.
    Link
  28. “Experimental and theoretical investigations on the photo-oxidation reaction of OH radicals with 2, 3-dimethyl-1, 3-butadiene in gas phase”.
    S. Vijayakumar & B. Rajakumar. Indian J. Chem. 2019, 58B, 209-218.
    Link
  29. “Cl Atom Initiated Photo-oxidation of Mono-chlorinated Propanes To Form Carbonyl Compounds: A Kinetic and Mechanistic Approach.”
    A. Kumar and B. Rajakumar. J. Phys. Chem. A 2019, 4, 723-741.
    Link
  30. “Excited state C–N bond dissociation and cyclization of tri-aryl amine-based OLED materials: a theoretical investigation.”
    J. Vijaya Sundar, V. Subramanian & B. Rajakumar. Phys. Chem. Chem. Phys. 2019, 21, 438-447.
    Link
  31. “Photo Oxidation Reaction Kinetics of Ethyl Propionate with Cl Atom and Formation of Propionic Acid.”
    R. C. Balan & B. Rajakumar. J. Phys. Chem. A. 2018, 122, 8274-8285.
    Link
  32. “Cl-initiated photo-oxidation reactions of methyl propionate in atmospheric condition.”
    R. C. Balan & B. Rajakumar. Environ. Sci. Pollut. Res. 2018, 25, 20999-21010..
    Link
  33. “Temperature-Dependent Kinetics of the Reaction of a Criegee Intermediate with Propionaldehyde: A Computational Investigation.”
    R. Kaipara & B. Rajakumar. J. Phys. Chem. A. 2018, 122, 8433-8445.
    Link
  34. “Thermochemistry and Kinetic Studies on the Autoignition of 2-Butanone: A Computational Study.”
    S. Kuzhanthaivelan & B. Rajakumar. J. Phys. Chem. A. 2018, 122, 6134-6146.
    Link
  35. “Kinetic investigations on the gas phase reaction of 2,2,2-trifluoroethylbutyrate with OH radicals: An experimental and theoretical study.”
    G. Srinivasulu, S. Vijayakumar & B. Rajakumar. Chemistry Select 2018, 3, 4480-4489.
    Link
  36. “Kinetic investigations on the chlorine atom sensitized photo-oxidization reactions with a series of 1-alkenes in troposphere.”
    S. Vijayakumar & B. Rajakumar, Environ. Sci. Pollut. Res. 2018, 25, 4387-4405.
    Link
  37. “Experimental and computational kinetic investigations for the reactions of Cl atoms with unsaturated ketones in gas phase.”
    S. Vijayakumar, A. Kumar & B. Rajakumar. New Journal of Chemistry 2017, 41, 14299-14314.
    Link
  38. “Experimental and RRKM investigations on the degradation of ethyl formate.”
    B. Rajakumar, M. Balaganseh & A. Parandaman. Chemistry Select 2017, 2, 11603 – 11614.
    Link
  39. “Shock tube study and RRKM calculations on thermal decomposition of 2-chloroethyl methyl ether.”
    A. Parandaman & B. Rajakumar. Combustion and Flame 2017, 186, 263-276.
    Link
  40. “An Experimental and Computational Study on the Cl Atom Initiated Photo-Oxidization Reactions of Butenes in the Gas Phase.”
    S. Vijayakumar & B. Rajakumar. J. Phys. Chem. A. 2017, 121, 5487–99.
    Link
  41. “Kinetic investigations of Cl atoms initiated photo oxidation reactions of cyclic unsaturated hydrocarbons in the gas phase: an experimental and theoretical study.”
    S. Vijayakumar, C. B. Ramya, A. Kumar & B. Rajakumar. New Journal of Chemistry 2017, 41, 7491 – 7505.
    Link
  42. “Addition and abstraction kinetics of H atom with propylene and isobutylene between 200 and 2500 K: A DFT study.”
    A. Parandaman & B. Rajakumar. Chemical Physics 2017, 491, 82-94.
    Link
  43. “Experimental and theoretical investigations on the reaction of 1,3-butadiene with Cl atom in the gas phase.”
    S. Vijayakumar & B. Rajakumar. J. Phys. Chem. A. 2017, 121, 1976−84.
    Link
  44. “Kinetic investigations of chlorine atom initiated photo oxidation reactions of 2,3-dimethyl-1,3- butadiene in the gas phase: an experimental and theoretical study.”
    S. Vijayakumar & B. Rajakumar. R. Soc. Chem. Adv. 2016, 6, 67739-50.
    Link
  45. “Thermal Decomposition of 2-Pentanol: A Shock Tube Study and RRKM Calculations.”
    P. Arathala & B. Rajakumar. J. Phys. Chem. A. 2016, 120 (41), 8024-8036.
    Link
  46. “Metal-free bipolar/octupolar organic dyes for DSSC application: A combined experimental and theoretical approach.”
    S. Mandal, S. Kushwaha, R. Mukkamala, S. Vijayakumar, I. S. Aidhen, B. Rajakumar, R. Kothandaraman. Organic Electronics 2016, 36, 177-184.
    Link
  47. “Kinetics of the thermal decomposition of tetramethylsilane behind the reflected shock waves between 1058 and 1194 K.”
    A. Parandaman & B. Rajakumar. J. Chem. Sci. 2016, 128, 573-588.
    Link
  48. “Rate coefficients for hydrogen abstraction reaction of pinonaldehyde (C10H16O2) with Cl atoms between 200 and 400 K: A DFT study.”
    G. Srinivasulu & B. Rajakumar. J. Chem. Sci. 2016, 128, 977-989.
    Link
  49. “Is H Atom Abstraction Important in the Reaction of Cl with 1-Alkenes?”. M. P. Walavalkar, S. Vijayakumar, A. Sharma, B. Rajakumar and S. Dhanya, J. Phys. Chem. A, 2016, 120, 4096-4107.Link
  50. “Measuring Temperature of Reflected Shock Wave Using a Standard Chemical Reaction.”
    M. Kiran Singh, B. Rajakumar & E. Arunan. Journal of the Indian Institute of Science 2016, 96:1, 53-61..
    Link
  51. “Experimental and theoretical study on thermal decomposition of methyl butanoate behind reflected shock waves.”
    A. Parandaman, M. Balaganesh & B. Rajakumar. R. Soc. Chem. Adv. 2015, 5, 86536-50.
    Link
  52. “Gas Phase Kinetics of 2,2,2-trifluoroethylbutyrate with Cl Atom: An Experimental and Theoretical Study”.
    G. Srinivasulu & B. Rajakumar. J. Phys. Chem. A. 2015, 119, 9294-9306.
    Link
  53. “Kinetic parameters for the reaction of OH radical with cis-CHF=CHCHF2, trans-CHF=CHCHF2, CF2=CHCHF2 and CF2=C=CHF: Hybrid meta DFT and CVT/SCT/ISPE calculations.”
    C. Ramanjaneyulu & B. Rajakumar. J. Fluorine Chem. 2015, 178, 266-278.
    Link
  54. “Experimental and computational investigation on the gas phase reaction of p-cymene with Cl atoms.”
    M. R. Dash, G. Srinivasulu, B. Rajakumar. J. Phys. Chem. A. 2015, 119, 4, 559-570.
    Link
  55. “Theoretical investigations of the gas phase reaction of limonene (C10H16) with OH radical.”
    M.R. Dash & B. Rajakumar. Molecular Physics 2015, 113, 21, 3202-15.
    Link
  56. “Abstraction and addition kinetics of C2H radicals with CH4, C2H6, C3H8, C2H4, and C3H6: CVT/SCT/ISPE and hybrid meta-DFT methods.”
    M. R. Dash & B. Rajakumar. Phys. Chem. Chem. Phys. 2015, 17, 5, 3142-3156.
    Link
  57. “Reaction kinetics of Cl atoms with limonene: An experimental and theoretical study.”
    M. R. Dash & B. Rajakumar. Atmos. Environ. 2014, 99, 183.
    Link
  58. “Theoretical investigations on the kinetics of p-cymene + OH reaction.”
    M. R. Dash & B. Rajakumar. Chem. Phys. Lett. 2014, 597, 75-85.
    Link
  59. “Rate coefficients for the gas-phase reaction of OH radical with alpha-pinene: An experimental and computational study.”
    M. R. Dash, M. Balaganesh, B. Rajakumar. Molecular Physics 2014, 112(11), 1495-1511.
    Link
  60. “Thermal decomposition of 1-chloropropane behind the reflected shock waves in the temperature range of 1015-1220 K: Single pulse shock tube and computational studies.”
    G. Sudhakar, B. Rajakumar. J. Chem. Sci. 2014, 126(4), 897-909.
    Link
  61. “Experimental and computational investigation on the gas phase reaction of ethyl formate with Cl atoms.”
    M. Balaganesh, M. R. Dash, B. Rajakumar. J. Phys. Chem. A 2014, 118(28), 5272-5278.
    Link
  62. “Mechanism, kinetics and atmospheric fate of CF3CHCH2, CF3CFCH2, and CF3CFCF2 by its reaction with OH-radicals: CVT/SCT/ISPE and hybrid meta-DFT methods”.
    Balaganesh, M., Rajakumar, B.; Journal of Molecular Graphics and Modelling 2014, 48, 60-69.
    Link
  63. “Theoretical investigations on the kinetics of H-abstraction reactions from CF3CH(OH)CF3 by OH radicals”.
    Srinivasulu G., Rajakumar B., J. Phys. Chem. A. 2013, 117(22), 4534-4544.
    Link
  64. “Experimental and theoretical rate coefficients for the gas phase reaction of beta-Pinene with OH radical”.
    Dash, M.R., Rajakumar, B. Atmos. Environ. 2013, 79, 161-171.
    Link
  65. “Abstraction Kinetics of H-Atom by OH Radical from Pinonaldehyde: Ab Initio and Transition-State Theory Calculations.”
    Manas Ranjan Dash and B. Rajakumar. J. Phys. Chem. A. 2012, 116, 5856-5866.
    Link
  66. “Kinetic parameters for the reaction of OH radical initiated atmospheric oxidation of (E)-2-pentenal: Ab initio and transition state theory calculations”.
    Upendra, B., Lakshmi Prasanna, D.S., Rajakumar, B., Current Science 2012, 102, 3, 460-469.
    Link
  67. “Rate Coefficients and Reaction Mechanism for the Reaction of OH Radicals with (E)-CF3CH═CHF, (Z)-CF3CH═CHF, (E)-CF3CF═CHF, and (Z)-CF3CF═CHF between 200 and 400 K: Hybrid Density Functional Theory and Canonical Variational Transition State Theory Calculations”.
    Balaganesh M., Rajakumar B., J. Phys. Chem. A. 2012, 116, 40, 9835-42.
    Link
  68. “Kinetic parameters of OH radical reaction with CH3OCH2F (HFE-161) in the temperature range of 200 400 K: Transition State Theory and ab initio calculations”.
    Veerabhadrarao Kaliginedi, Mohamad Akbar Ali and B. Rajakumar. International Journal of Quantum Chemistry, 2011, 112, 1066-77.
    Link
  69. Kinetic parameters of abstraction reactions of OH radical with ethylene, fluoroethylene, cis- and trans-1,2-difluoroethylene and 1,1-difluoroethylene, in the temperature range of 200-400 K: Gaussian-3/B3LYP theory”.
    Ali, M. A., Upendra, B., Rajakumar, B. Chem. Phys. Lett. 2011, 511(4-6), 440-446.
    Link
  70. “Computational studies on CHF2CHFCHF2 (HFC-245ea) + OH reaction between 200 and 400 K”.
    Mohamad Akbar Ali, B. Rajakumar. Int. J. Chem. Kinet. 2011, 43, 418-430.
    Link
  71. “Thermodynamic and kinetic studies of hydroxyl radical reaction with bromineoxide using density functional theory”.
    Mohamad Akbar Ali, B.Rajakumar. Computational and Theoretical Chemistry 2011, 964, 283.
    Link
  72. “Kinetics of OH radical reaction with CH3CHFCH2F (HFC-245eb) between 200 and 400K: G3MP2, G3B3 and Transition State Theory Calculations”.
    Mohamad Akbar Ali, B. Rajakumar. Journal of Molecular Structure: THEOCHEM. 2010, 949, 73-81.
    Link
  73. “Rate Coefficients for the Reactions of OH with n-propanol and iso-propanol between 235 and 376K”.
    B. Rajakumar, David C. McCabe, Ranajit K. Talukdar, A. R. Ravishankara. Int. J. Chem. Kinet. 2010, 43, 10.
    Link
  74. “Kinetic study of the reaction of the acetyl radical, CH3CO, with O3 using cavity ring-down spectroscopy”.
    Thomasz Gierczak, B.Rajakumar, John E. Flad, James B. Burkholder. Chem. Phys. Lett. 2010, 484, 160-164.
    Link
  75. “Rate coefficients for the Reaction of OH with CF3CH2CH3 (HFC-263fb) between 200 and 400K: ab initio, DFT and Transitions State Theory Calculations”.
    Mohamad Akbar Ali, B. Rajakumar. J. Comp. Chem. 2010, 31, 500-509.
    Link
  76. “Rate coefficients for the reactions of the acetyl radical, CH3CO, with Cl2 between 253 and 384K”.
    Thomasz Gierczak, B.Rajakumar, John E. Flad, James B. Burkholder. Int. J. Chem. Kinet. 2009, 41, 543-553.
    Link
  77. “The CH3CHO quantum yield in the 248 nm photolysis of acetone, methyl ethyl ketone, and biacetyl.”
    B.Rajakumar, Thomasz Gierczak, John E. Flad, A. R. Ravishankara, James B. Burkholder. J. Photo. Chem. Photo. Biol. A: Chemistry, 2008, 199, 336-344.
    Link
  78. “Visible absorption spectrum of acetyl radical”.
    B. Rajakumar, Thomas Gericzak, John E. Flad, A. R. Ravishankara, James B. Burkholder, J. Phys. Chem. A. 2007, 111, 8950-8958. (Cover Page Article, Issue 37)
    Link
  79. “Kinetics of Quenching of OH (v=1) and OD (v=1) by H2O and D2O from 260 to 370K”.
    David C. McCabe, B. Rajakumar, P. Marshall, I. W. M. Smith, A. R. Ravishankara. Phys. Chem. Chem. Phys. 2006, 8, 4563-94.
    Link
  80. “Rate coefficients for the relaxation of OH(v=1) by O2 at Temperatures from 204-371 K and by NO2 from 243-372 K”.
    David C. McCabe, B. Rajakumar, I. W. M. Smith, A. R. Ravishankara. Chem. Phys. Lett. 2006, 421, 111-117.
    Link
  81. “Rate Coefficients for the Reactions of OH with CF3CH2CH3 (HFC-263fb), CF3CHFCH2F (HFC-245eb), and CHF2CHFCHF2 (HFC-245ea) between 238 and 375 K”.
    B. Rajakumar, R. W. Portmann, James B. Burkholder, A. R. Ravishankara. J. Phys. Chem. A. 2006, 110, 6724-31.
    Link
  82. “Rate coefficients for the OH + CFH2CH2OH reaction between 238 and 355 K”.
    B. Rajakumar, Robert W. Portmann, James B. Burkholder, A. R. Ravishankara. Phys. Chem. Chem. Phys. 2005, 7, 2498-2505.
    Link
  83. “Ab initio, DFT and transition state theory calculations on 1, 2-HF, HCI and CIF elimination reactions from CH2FCH2Cl.”
    B. Rajakumar, E. Arunan. Phys. Chem. Chem. Phys. 2003, 5, 3897-3904.
    Link
  84. “Thermal decomposition of 2-fluoroethanol: A Shock Tube and ab initio study.”
    B. Rajakumar, K. P. J. Reddy, E. Arunan. J. Phys. Chem. A. 2003, 107, 9782- 9793.
    Link
  85. “Chemical kinetics studies at high temperature using Shock Tubes.”
    B. Rajakumar, D. Anandraj, K. P. J. Reddy & E. Arunan. J. Ind. Inst. Sci. 2002, 82, 37-47.
    Link
  86. “Unimolecular HCl elimination from 1,2-dichloroethane: A Single Pulse Shock Tube and ab initio study.”
    B. Rajakumar, K. P. J. Reddy & E. Arunan. J. Phys. Chem. A. 2002, 106, 8366.
    Link
  1. “Kinetic Investigation of the Reaction of Ethylperoxy Radicals with Ethanol”
    S. Kuzhanthaivelan & B. Rajakumar. Int. J. Chem. Kinet. 2020.(Just Accepted!)
  2. “Reaction kinetics of a series of alkenes with ClO and BrO radicals: A theoretical study”
    P. Gupta & B. Rajakumar. Int. J. Chem. Kinet. 2020.(Just Accepted!)
  3. “Reaction kinetics of a series of alkanes with ClO and BrO radicals: A theoretical study”
    P. Gupta & B. Rajakumar. Int. J. Chem. Kinet. 2020, 1-18.
    Link
  4. “Kinetics, thermochemistry and atmospheric implications for the reaction of OH radicals with CH3CF=CF2 (HFO-1243yc)”
    F. Jabeen, A. Kumar & B. Rajakumar. Chem. Phys. Lett. 2020, 758, 137933.
    Link
  5. “Reaction of phenyl radicals towards propionaldehyde and butyraldehyde over the temperature range of 200-2000 K”
    P. Gupta & B. Rajakumar. Chem. Phys. Lett. 2020, 758, 137915.
    Link
  6. “Theoretical Investigations on the Kinetics of Dimethoxymethane with Peroxy Radicals”
    S. Kuzhanthaivelan & B. Rajakumar. Chem. Phys. Lett. 2020, 756, 137846.
    Link
  7. “Temperature-dependent kinetics on the reactions of Methyl-2-methyl propionate and Methyl -2-methyl butanoate with Cl atoms under tropospheric conditions”
    R. Kaipara & B. Rajakumar. ACS Earth Space Chem. 2020, 4(8), 1448-1460.
    Link
  8. “Kinetic Investigations on the Reaction of Phenyl Radicals with Ethyl Acetate in the Gas Phase: An Experimental and Computational Study”
    K. Mondal & B. Rajakumar. J. Phys. Chem. A 2020, 124 (27), 5503-5512.
    Link
  9. “Computational investigations on the thermochemistry and kinetics for the autoignition of 2-pentanone”
    S. Kuzhanthaivelan & B. Rajakumar. Combustion and Flame 2020, 219, 147-160.
    Link
  10. “Tropospheric Photo-Oxidation of Ethyl Methacrylate Initiated by Cl Atoms in the Gas Phase: Kinetic and Mechanistic Investigations”
    A. Kumar & B. Rajakumar. ACS Earth Space Chem. 2020, 4 (6), 831-842.
    Link
  11. “Dissociative Nature of C(sp2)-N(sp3) bonds of Carbazole Based Materials via Conical Intersection: Simple Method to Predict the Exciton Stability of Host Materials for blue OLEDs: A Computational Study.”
    J. Vijaya Sundar & B. Rajakumar. Phys. Chem. Chem. Phys. 2020, 22, 7995-8005.
    Link
  12. “Photo-Oxidation Reactions of Ethyl 2-Methyl Propionate (E2MP) and Ethyl-2,2- Dimethyl Propionate (E22DMP) Initiated by OH Radicals: An Experimental and Computational Study.”
    R. Kaipara & B. Rajakumar. J. Phys. Chem. A. 2020, 124 (14), 2768-2784.
    Link
  13. “Tropospheric Chemistry of Ethyl Tiglate Initiated by Cl Atoms”
    R. C. Balan & B. Rajakumar. Chem. Phys. Lett. 2020, 248, 137371.
    Link
  14. “Cl-Initiated Photo-Oxidation Studies of Methyl Valerate and Methyl Isovalerate under Tropospheric Relevant Conditions”
    R. Kaipara & B. Rajakumar. J. Phys. Chem. A. 2020, 124 (13), 2515-2529.
    Link
  15. “Kinetic and Mechanistic Investigation for the Gas Phase Tropospheric Photo-Oxidation Reactions of 2,2,2-Trifluoroethyl Acrylate with OH Radicals and Cl Atoms”
    A. Kumar & B. Rajakumar. J. Phys. Chem. A. 2020, 124 (12), 2335-2351.
    Link
  16. “Cl Atom Initiated Photo-Oxidation Reactions of Vinyl Trifluoroacetate and Allyl Trifluoroacetate in the Tropospheric Conditions”
    R. Kaipara & B. Rajakumar. J. Phys. Chem. A. 2020, 124 (11), 2123-2139.
    Link
  17. “Reaction kinetics of CH2OO with 1,3-butadiene: Mechanistic investigation with RRKM calculations”
    P. Gupta & B. Rajakumar. Chem. Phys. Lett. 2020, 742, 137157.
    Link
  18. “Oxidative degradation kinetics and mechanism of two biodiesel constituents ((Ethyl-2-methyl propionate (E2MP) and ethyl-2,2-dimethyl propionate (E22DMP)) initiated by Cl atoms”
    R. Kaipara and B. Rajakumar. ACS Earth Space Chem. 2020, 4, 142-156.
    Link
  1. “Cl Atom and OH Radical Initiated Kinetic and Mechanistic Study on the Degradation of Propyl Butanoate under Tropospheric Conditions”
    P. Gupta and B. Rajakumar. J. Phys. Chem. A 2019, 123, 10976-10989.
    Link
  2. “Kinetics and Mechanistic Study for Gas Phase Tropospheric Photo-Oxidation Reactions of 2,2,2-Trifluoroethyl Methacrylate With OH Radicals and Cl Atoms: An Experimental and Computational Approach”
    A. Kumar & B. Rajakumar. J. Phys. Chem. A 2019, 123, 10868-10884.
    Link
  3. “Gas Phase Kinetics and Mechanistic Insights for the Reactions of Cl atoms with Isopropyl Formate and Isobutyl Formate”
    A. Kumar and B. Rajakumar, J. Phys. Chem. A. 2019, 123, 9978-9994.
    Link
  4. “Investigation of the Absorption Cross-Section of Phenyl Radical and Its Kinetics With Methanol in the Gas Phase Using Cavity Ring-Down Spectroscopy and Theoretical Methodologies”
    K. Mondal, R. Kaipara and B. Rajakumar. J. Phys. Chem. A 2019, 123, 9682-9692.
    Link
  5. “Cl Atom Initiated Atmospheric Degradation of Saturated Cyclic Hydrocarbons – Kinetic and Mechanistic Investigation.”
    R. C. Balan & B. Rajakumar. J. Phys. Chem. A 2019, 123, 34, 7361-73.
    Link
  6. “Cl atom initiated tropospheric chemistry of ethyl butyrate.”
    R. C. Balan & B. Rajakumar. Chem. Phys. Lett. 2019, 731, 136594.
    Link
  7. “Photo Oxidation Reaction Kinetics and Mechanistics of 4-Hydroxy-2-Butanone with Cl Atoms and OH Radicals in the Gas Phase”.
    R. C. Balan & B. Rajakumar. J. Phys. Chem. A 2019, 123, 20, 4342-53.
    Link
  8. “A theoretical insight on the kinetics for the reaction of (E)-/(Z)-CHF=CF(CF2)x=1,2CF3 with OH radicals under tropospheric conditions.”
    P. Gupta & B. Rajakumar. J. Fluorine Chem. 2019, 222-223, 31-45.
    Link
  9. “A dual level direct dynamics study for the reaction of CF2=CHCF3 (HFC-1225zc) and CF2=CHCF2CF3 (HFC-1327cz) towards OH radicals.”
    P. Gupta & B. Rajakumar. Chemistry Select 2019, 4, 4827- 4838.
    Link
  10. “Experimental and theoretical investigations on the photo-oxidation reaction of OH radicals with 2, 3-dimethyl-1, 3-butadiene in gas phase”.
    S. Vijayakumar & B. Rajakumar. Indian J. Chem. 2019, 58B, 209-218.
    Link
  11. “Cl Atom Initiated Photo-oxidation of Mono-chlorinated Propanes To Form Carbonyl Compounds: A Kinetic and Mechanistic Approach.”
    A. Kumar and B. Rajakumar. J. Phys. Chem. A 2019, 4, 723-741.
    Link
  12. “Excited state C–N bond dissociation and cyclization of tri-aryl amine-based OLED materials: a theoretical investigation.”
    J. Vijaya Sundar, V. Subramanian & B. Rajakumar. Phys. Chem. Chem. Phys. 2019, 21, 438-447.
    Link
  13. “Photo Oxidation Reaction Kinetics of Ethyl Propionate with Cl Atom and Formation of Propionic Acid.”
    R. C. Balan & B. Rajakumar. J. Phys. Chem. A. 2018, 122, 8274-8285.
    Link
  14. “Cl-initiated photo-oxidation reactions of methyl propionate in atmospheric condition.”
    R. C. Balan & B. Rajakumar. Environ. Sci. Pollut. Res. 2018, 25, 20999-21010..
    Link
  15. “Temperature-Dependent Kinetics of the Reaction of a Criegee Intermediate with Propionaldehyde: A Computational Investigation.”
    R. Kaipara & B. Rajakumar. J. Phys. Chem. A. 2018, 122, 8433-8445.
    Link
  16. “Thermochemistry and Kinetic Studies on the Autoignition of 2-Butanone: A Computational Study.”
    S. Kuzhanthaivelan & B. Rajakumar. J. Phys. Chem. A. 2018, 122, 6134-6146.
    Link
  17. “Kinetic investigations on the gas phase reaction of 2,2,2-trifluoroethylbutyrate with OH radicals: An experimental and theoretical study.”
    G. Srinivasulu, S. Vijayakumar & B. Rajakumar. Chemistry Select 2018, 3, 4480-4489.
    Link
  18. “Kinetic investigations on the chlorine atom sensitized photo-oxidization reactions with a series of 1-alkenes in troposphere.”
    S. Vijayakumar & B. Rajakumar, Environ. Sci. Pollut. Res. 2018, 25, 4387-4405.
    Link
  19. “Experimental and computational kinetic investigations for the reactions of Cl atoms with unsaturated ketones in gas phase.”
    S. Vijayakumar, A. Kumar & B. Rajakumar. New Journal of Chemistry 2017, 41, 14299-14314.
    Link
  20. “Experimental and RRKM investigations on the degradation of ethyl formate.”
    B. Rajakumar, M. Balaganseh & A. Parandaman. Chemistry Select 2017, 2, 11603 – 11614.
    Link
  21. “Shock tube study and RRKM calculations on thermal decomposition of 2-chloroethyl methyl ether.”
    A. Parandaman & B. Rajakumar. Combustion and Flame 2017, 186, 263-276.
    Link
  22. “An Experimental and Computational Study on the Cl Atom Initiated Photo-Oxidization Reactions of Butenes in the Gas Phase.”
    S. Vijayakumar & B. Rajakumar. J. Phys. Chem. A. 2017, 121, 5487–99.
    Link
  23. “Kinetic investigations of Cl atoms initiated photo oxidation reactions of cyclic unsaturated hydrocarbons in the gas phase: an experimental and theoretical study.”
    S. Vijayakumar, C. B. Ramya, A. Kumar & B. Rajakumar. New Journal of Chemistry 2017, 41, 7491 – 7505.
    Link
  24. “Addition and abstraction kinetics of H atom with propylene and isobutylene between 200 and 2500 K: A DFT study.”
    A. Parandaman & B. Rajakumar. Chemical Physics 2017, 491, 82-94.
    Link
  25. “Experimental and theoretical investigations on the reaction of 1,3-butadiene with Cl atom in the gas phase.”
    S. Vijayakumar & B. Rajakumar. J. Phys. Chem. A. 2017, 121, 1976−84.
    Link
  26. “Kinetic investigations of chlorine atom initiated photo oxidation reactions of 2,3-dimethyl-1,3- butadiene in the gas phase: an experimental and theoretical study.”
    S. Vijayakumar & B. Rajakumar. R. Soc. Chem. Adv. 2016, 6, 67739-50.
    Link
  27. “Thermal Decomposition of 2-Pentanol: A Shock Tube Study and RRKM Calculations.”
    P. Arathala & B. Rajakumar. J. Phys. Chem. A. 2016, 120 (41), 8024-8036.
    Link
  28. “Metal-free bipolar/octupolar organic dyes for DSSC application: A combined experimental and theoretical approach.”
    S. Mandal, S. Kushwaha, R. Mukkamala, S. Vijayakumar, I. S. Aidhen, B. Rajakumar, R. Kothandaraman. Organic Electronics 2016, 36, 177-184.
    Link
  29. “Kinetics of the thermal decomposition of tetramethylsilane behind the reflected shock waves between 1058 and 1194 K.”
    A. Parandaman & B. Rajakumar. J. Chem. Sci. 2016, 128, 573-588.
    Link
  30. “Rate coefficients for hydrogen abstraction reaction of pinonaldehyde (C10H16O2) with Cl atoms between 200 and 400 K: A DFT study.”
    G. Srinivasulu & B. Rajakumar. J. Chem. Sci. 2016, 128, 977-989.
    Link
  31. “Is H Atom Abstraction Important in the Reaction of Cl with 1-Alkenes?”. M. P. Walavalkar, S. Vijayakumar, A. Sharma, B. Rajakumar and S. Dhanya, J. Phys. Chem. A, 2016, 120, 4096-4107.Link
  32. “Measuring Temperature of Reflected Shock Wave Using a Standard Chemical Reaction.”
    M. Kiran Singh, B. Rajakumar & E. Arunan. Journal of the Indian Institute of Science 2016, 96:1, 53-61..
    Link
  33. “Experimental and theoretical study on thermal decomposition of methyl butanoate behind reflected shock waves.”
    A. Parandaman, M. Balaganesh & B. Rajakumar. R. Soc. Chem. Adv. 2015, 5, 86536-50.
    Link
  34. “Gas Phase Kinetics of 2,2,2-trifluoroethylbutyrate with Cl Atom: An Experimental and Theoretical Study”.
    G. Srinivasulu & B. Rajakumar. J. Phys. Chem. A. 2015, 119, 9294-9306.
    Link
  35. “Kinetic parameters for the reaction of OH radical with cis-CHF=CHCHF2, trans-CHF=CHCHF2, CF2=CHCHF2 and CF2=C=CHF: Hybrid meta DFT and CVT/SCT/ISPE calculations.”
    C. Ramanjaneyulu & B. Rajakumar. J. Fluorine Chem. 2015, 178, 266-278.
    Link
  36. “Experimental and computational investigation on the gas phase reaction of p-cymene with Cl atoms.”
    M. R. Dash, G. Srinivasulu, B. Rajakumar. J. Phys. Chem. A. 2015, 119, 4, 559-570.
    Link
  37. “Theoretical investigations of the gas phase reaction of limonene (C10H16) with OH radical.”
    M.R. Dash & B. Rajakumar. Molecular Physics 2015, 113, 21, 3202-15.
    Link
  38. “Abstraction and addition kinetics of C2H radicals with CH4, C2H6, C3H8, C2H4, and C3H6: CVT/SCT/ISPE and hybrid meta-DFT methods.”
    M. R. Dash & B. Rajakumar. Phys. Chem. Chem. Phys. 2015, 17, 5, 3142-3156.
    Link
  1. “Reaction kinetics of Cl atoms with limonene: An experimental and theoretical study.”
    M. R. Dash & B. Rajakumar. Atmos. Environ. 2014, 99, 183.
    Link
  2. “Theoretical investigations on the kinetics of p-cymene + OH reaction.”
    M. R. Dash & B. Rajakumar. Chem. Phys. Lett. 2014, 597, 75-85.
    Link
  3. “Rate coefficients for the gas-phase reaction of OH radical with alpha-pinene: An experimental and computational study.”
    M. R. Dash, M. Balaganesh, B. Rajakumar. Molecular Physics 2014, 112(11), 1495-1511.
    Link
  4. “Thermal decomposition of 1-chloropropane behind the reflected shock waves in the temperature range of 1015-1220 K: Single pulse shock tube and computational studies.”
    G. Sudhakar, B. Rajakumar. J. Chem. Sci. 2014, 126(4), 897-909.
    Link
  5. “Experimental and computational investigation on the gas phase reaction of ethyl formate with Cl atoms.”
    M. Balaganesh, M. R. Dash, B. Rajakumar. J. Phys. Chem. A 2014, 118(28), 5272-5278.
    Link
  6. “Mechanism, kinetics and atmospheric fate of CF3CHCH2, CF3CFCH2, and CF3CFCF2 by its reaction with OH-radicals: CVT/SCT/ISPE and hybrid meta-DFT methods”.
    Balaganesh, M., Rajakumar, B.; Journal of Molecular Graphics and Modelling 2014, 48, 60-69.
    Link
  7. “Theoretical investigations on the kinetics of H-abstraction reactions from CF3CH(OH)CF3 by OH radicals”.
    Srinivasulu G., Rajakumar B., J. Phys. Chem. A. 2013, 117(22), 4534-4544.
    Link
  8. “Experimental and theoretical rate coefficients for the gas phase reaction of beta-Pinene with OH radical”.
    Dash, M.R., Rajakumar, B. Atmos. Environ. 2013, 79, 161-171.
    Link
  9. “Abstraction Kinetics of H-Atom by OH Radical from Pinonaldehyde: Ab Initio and Transition-State Theory Calculations.”
    Manas Ranjan Dash and B. Rajakumar. J. Phys. Chem. A. 2012, 116, 5856-5866.
    Link
  10. “Kinetic parameters for the reaction of OH radical initiated atmospheric oxidation of (E)-2-pentenal: Ab initio and transition state theory calculations”.
    Upendra, B., Lakshmi Prasanna, D.S., Rajakumar, B., Current Science 2012, 102, 3, 460-469.
    Link
  11. “Rate Coefficients and Reaction Mechanism for the Reaction of OH Radicals with (E)-CF3CH═CHF, (Z)-CF3CH═CHF, (E)-CF3CF═CHF, and (Z)-CF3CF═CHF between 200 and 400 K: Hybrid Density Functional Theory and Canonical Variational Transition State Theory Calculations”.
    Balaganesh M., Rajakumar B., J. Phys. Chem. A. 2012, 116, 40, 9835-42.
    Link
  12. “Kinetic parameters of OH radical reaction with CH3OCH2F (HFE-161) in the temperature range of 200 400 K: Transition State Theory and ab initio calculations”.
    Veerabhadrarao Kaliginedi, Mohamad Akbar Ali and B. Rajakumar. International Journal of Quantum Chemistry, 2011, 112, 1066-77.
    Link
  13. Kinetic parameters of abstraction reactions of OH radical with ethylene, fluoroethylene, cis- and trans-1,2-difluoroethylene and 1,1-difluoroethylene, in the temperature range of 200-400 K: Gaussian-3/B3LYP theory”.
    Ali, M. A., Upendra, B., Rajakumar, B. Chem. Phys. Lett. 2011, 511(4-6), 440-446.
    Link
  14. “Computational studies on CHF2CHFCHF2 (HFC-245ea) + OH reaction between 200 and 400 K”.
    Mohamad Akbar Ali, B. Rajakumar. Int. J. Chem. Kinet. 2011, 43, 418-430.
    Link
  15. “Thermodynamic and kinetic studies of hydroxyl radical reaction with bromineoxide using density functional theory”.
    Mohamad Akbar Ali, B.Rajakumar. Computational and Theoretical Chemistry 2011, 964, 283.
    Link
  1. “Kinetics of OH radical reaction with CH3CHFCH2F (HFC-245eb) between 200 and 400K: G3MP2, G3B3 and Transition State Theory Calculations”.
    Mohamad Akbar Ali, B. Rajakumar. Journal of Molecular Structure: THEOCHEM. 2010, 949, 73-81.
    Link
  2. “Rate Coefficients for the Reactions of OH with n-propanol and iso-propanol between 235 and 376K”.
    B. Rajakumar, David C. McCabe, Ranajit K. Talukdar, A. R. Ravishankara. Int. J. Chem. Kinet. 2010, 43, 10.
    Link
  3. “Kinetic study of the reaction of the acetyl radical, CH3CO, with O3 using cavity ring-down spectroscopy”.
    Thomasz Gierczak, B.Rajakumar, John E. Flad, James B. Burkholder. Chem. Phys. Lett. 2010, 484, 160-164.
    Link
  4. “Rate coefficients for the Reaction of OH with CF3CH2CH3 (HFC-263fb) between 200 and 400K: ab initio, DFT and Transitions State Theory Calculations”.
    Mohamad Akbar Ali, B. Rajakumar. J. Comp. Chem. 2010, 31, 500-509.
    Link
  5. “Rate coefficients for the reactions of the acetyl radical, CH3CO, with Cl2 between 253 and 384K”.
    Thomasz Gierczak, B.Rajakumar, John E. Flad, James B. Burkholder. Int. J. Chem. Kinet. 2009, 41, 543-553.
    Link
  6. “The CH3CHO quantum yield in the 248 nm photolysis of acetone, methyl ethyl ketone, and biacetyl.”
    B.Rajakumar, Thomasz Gierczak, John E. Flad, A. R. Ravishankara, James B. Burkholder. J. Photo. Chem. Photo. Biol. A: Chemistry, 2008, 199, 336-344.
    Link
  7. “Visible absorption spectrum of acetyl radical”.
    B. Rajakumar, Thomas Gericzak, John E. Flad, A. R. Ravishankara, James B. Burkholder, J. Phys. Chem. A. 2007, 111, 8950-8958. (Cover Page Article, Issue 37)
    Link
  8. “Kinetics of Quenching of OH (v=1) and OD (v=1) by H2O and D2O from 260 to 370K”.
    David C. McCabe, B. Rajakumar, P. Marshall, I. W. M. Smith, A. R. Ravishankara. Phys. Chem. Chem. Phys. 2006, 8, 4563-94.
    Link
  9. “Rate coefficients for the relaxation of OH(v=1) by O2 at Temperatures from 204-371 K and by NO2 from 243-372 K”.
    David C. McCabe, B. Rajakumar, I. W. M. Smith, A. R. Ravishankara. Chem. Phys. Lett. 2006, 421, 111-117.
    Link
  10. “Rate Coefficients for the Reactions of OH with CF3CH2CH3 (HFC-263fb), CF3CHFCH2F (HFC-245eb), and CHF2CHFCHF2 (HFC-245ea) between 238 and 375 K”.
    B. Rajakumar, R. W. Portmann, James B. Burkholder, A. R. Ravishankara. J. Phys. Chem. A. 2006, 110, 6724-31.
    Link
  11. “Rate coefficients for the OH + CFH2CH2OH reaction between 238 and 355 K”.
    B. Rajakumar, Robert W. Portmann, James B. Burkholder, A. R. Ravishankara. Phys. Chem. Chem. Phys. 2005, 7, 2498-2505.
    Link